MapReduce与遗传算法、MapReduce与粒子群算法结合与实现

遗传算法(大白话解析遗传算法):http://www.cnblogs.com/heaad/archive/2010/12/23/1914725.html
Java代码用遗传算法解决0-1背包:http://wenku.baidu.com/view/20beb6da6f1aff00bed51ea8.html

MapReduce和遗传算法结合:(参考文献:MapReduce-GA-eScience2008)

Map——评估每个个体
输入: (key, value) (个体索引, 个体)
输出: (key,value) (相同默认的键值, 个体)

Reduce——选择局部最优个体
输出: (key,value) (个体, 1)

Reduce——全局最优
输出: (key, value) (最优个体,1)

Coordinator——交叉、变异

二、MapReduce和粒子群算法结合:(参考文献:Parallel PSOUsing MapReduce)

Map——得到最优个体解
输入:(key, value)(粒子索引,粒子状态:包括相邻节点、位置坐标、速度、位置值、个人最优位置、个人最 优值、全局最优位置、全局最优值)
输出:(key, value) (最优粒子索引,最优粒子状态:同上)

Reduce——得到最优全局解
输出:(key, value) (全局最优粒子索引,全局最优粒子状态:同上)

  • 产生初始粒子
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random;

public class psotest {
    
    private final int iRang= 30;
    static int dim =2;
    static int sizepop =20;
    double sum1 = 0;
    double sum2 = 0;
    double g = 10000;
    private Random random =new Random();
    public double[][] pop =new double[sizepop][dim];
    public double[][] dpbest= new double[sizepop][dim];
    public double[][] V =new double[sizepop][dim];
    public double[] fitness= new double[sizepop];
    public double[] gbest =new double[dim]; 
    public double[]fitnessgbest = new double[sizepop];
    public double[]bestfitness = new double[sizepop];
    int m_iTempPos =999;

    public void c() {
       for(int i = 0; i < sizepop;i++)
       {
           for(int j= 0; j < dim; j++) {
              pop[i][j] = (random.nextDouble() - 0.5) * 2 *iRang; 
              V[i][j] = dpbest[i][j] =pop[i][j];
           }
           for(int j= 0; j < dim; j++) {
              sum1 += Math.pow(pop[i][j],2);
              sum2 +=Math.cos(2*Math.PI*pop[i][j]);
           }
           fitness[i]= -20 * Math.exp(-0.2 * Math.sqrt((1.0 / dim) * sum1))
                 - Math.exp((1.0 / dim) * sum2) + 20 +2.72;
          bestfitness[i] = 10000;
          if(bestfitness[i] > fitness[i]) {
              bestfitness[i] =fitness[i];
              for(int j = 0; j< dim; j++) {
                 dpbest[i][j] = pop[i][j];
              }
           }
       }
       
       for(int i = 0; i < sizepop;i++)
       {
           if(bestfitness[i] < g) {
                 g = bestfitness[i];
                 m_iTempPos = i;
           }
       }
       if (m_iTempPos != 999) {
           for (int j= 0; j < dim; j++) {
              gbest[j] =dpbest[m_iTempPos][j];
           }
       }
    }
    public static voidmain(String[] args) throws IOException {
       psotest pso = new psotest();
       pso.c();
       File file = newFile("E:\\JavaProgram\\psotest\\input\\file.txt");
       BufferedWriter out=new BufferedWriter(newFileWriter(file,true));
       for(int i = 0; i < sizepop; i++){
          out.write(i + " ");
           for(int j= 0; j < dim; j++) {
              out.write(pso.pop[i][j] + " "+ pso.V[i][j] + " " + pso.dpbest[i][j] + " " + pso.gbest[j] + "");
           }
          out.write(pso.bestfitness[i]+" "+pso.g);
          out.newLine();
       }
       out.close();
    }
}
  • 粒子群算法的MapReduce版:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    
    package test;
    import java.io.IOException;
    import java.util.Random;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.DoubleWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class posmr {
        public static classIntSumReducer extends
              Mapper<Object, Text, DoubleWritable,Text> {
           private DoubleWritable job1map_key = newDoubleWritable();
           private Text job1map_value = new Text();
           static int dim = 2;
           static int sizepop = 20;
           private final double w = 1;
           static double c1 = 1;
           static double c2 = 1;
           public double[] pop = new double[dim];
           public double[] dpbest = new double[dim];
           public double[] V = new double[dim];
           public double[] fitness = newdouble[sizepop];
           public double[] gbest = new double[dim];
           public String[] S_value = new String[dim];
           public String F_value;
           public double bestfitness;
           public double m_dFitness;
           private Random random = new Random();
           double g;
           double sum1;
           double sum2;
    
           public void map(Object key, Text values, Contextcontext)
                  throws IOException,InterruptedException {
               Stringitr[] = values.toString().split("\\s");
               int k =1;
               F_value ="";
               for (int j= 0; j < dim; j++) {
                  pop[j] =Double.valueOf((itr[k++]));
                  V[j] =Double.valueOf((itr[k++]));
                  dpbest[j] =Double.valueOf((itr[k++]));
                  gbest[j] =Double.valueOf((itr[k++]));
               }
              bestfitness = Double.valueOf((itr[k++]));
               g =Double.valueOf((itr[k++]));
    
               for (int i= 0; i < dim; i++) {
                  V[i] = w * V[i] + c1 *random.nextDouble()
                         *(dpbest[i] - pop[i]) + c2 * random.nextDouble()
                         *(gbest[i] - pop[i]);
                  pop[i] = pop[i] + V[i];
               }
               sum1 =0;
               sum2 =0;
               //计算Ackley 函数的值
               for (int i= 0; i < dim; i++) {
                  sum1 += pop[i] *pop[i];
                  sum2 += Math.cos(2 * Math.PI* pop[i]);
               }
               //m_dFitness 计算出的当前值
               m_dFitness= -20 * Math.exp(-0.2 * Math.sqrt((1.0 / dim) * sum1))
                     - Math.exp((1.0 / dim) * sum2) + 20 +2.72;
              if(m_dFitness < 0) {
                  System.out.println(sum1 + " "+ m_dFitness + " " + sum2);
               }
               if(m_dFitness < bestfitness) {
                  bestfitness =m_dFitness;
                  for (int i = 0; i< dim; i++) {
                     dpbest[i] = pop[i];
                  }
               }
               for (int j= 0; j < dim; j++) {
                  S_value[j] =Double.toString(pop[j]) + " "
                         +Double.toString(V[j]) + " "
                         +Double.toString(dpbest[j]) + " ";
               }
               for (int j= 0; j < dim; j++) {
                  F_value += S_value[j];
               }
              job1map_key.set(bestfitness);
              job1map_value.set(F_value);
              context.write(job1map_key, job1map_value);
           }
        }
    
        public static classjob1Reducer extends
              Reducer<DoubleWritable, Text, DoubleWritable,Text> {
           private DoubleWritable job1reduce_key = newDoubleWritable();
           private Text job1reduce_value = newText();
           static int dim = 2;
           static int sizepop = 20;
    
           public double[] pop = new double[dim];
           public double[] dpbest = new double[dim];
           public double[] V = new double[dim];
           public double[] gbest = new double[dim];
           public double[] gbest_temp = newdouble[dim];
           public String[] S_value = new String[dim];
           public String F_value;
           public double m_dFitness =Double.MAX_VALUE;
    
           public void reduce(DoubleWritable key,Iterable<Text> values,
                  Context context) throwsIOException, InterruptedException {
               Doublebestfitness = Double.valueOf(key.toString());
               intk;
               if(bestfitness < m_dFitness) {
                  m_dFitness =bestfitness;
                  for (Text val : values){
                     String itr[] = val.toString().split(" ");
                     k = 0;
                     for (int j = 0; j < dim; j++){
                         pop[j] =Double.valueOf((itr[k++]));
                         V[j] =Double.valueOf((itr[k++]));
                         dpbest[j]= Double.valueOf((itr[k++]));
                     }
                     for (int j = 0; j < dim; j++){
                         gbest[j] =dpbest[j];
                        gbest_temp[j] = dpbest[j];
                     }
                     F_value = "";
                     for (int j = 0; j < dim; j++){
                         S_value[j]= Double.toString(pop[j]) + " "
                               + Double.toString(V[j]) + " "
                               + Double.toString(dpbest[j]) + " "
                               + Double.toString(gbest[j]) + " ";
                     }
                     for (int j = 0; j < dim; j++){
                         F_value +=S_value[j];
                     }
                     F_value += (Double.toString(bestfitness)) + ""
                            +(Double.toString(m_dFitness));
                     job1reduce_key.set(1);
                     job1reduce_value.set(F_value);
                     context.write(job1reduce_key,job1reduce_value);
                  }
               } else{
                  for (Text val : values){
                     String itr[] = val.toString().split(" ");
                     k = 0;
                     for (int j = 0; j < dim; j++){
                         pop[j] =Double.valueOf((itr[k++]));
                         V[j] =Double.valueOf((itr[k++]));
                         dpbest[j]= Double.valueOf((itr[k++]));
                     }
                     for (int j = 0; j < dim; j++){
                         gbest[j] =gbest_temp[j];
                     }
                     F_value = "";
                     for (int j = 0; j < dim; j++){
                         S_value[j]= Double.toString(pop[j]) + " "
                               + Double.toString(V[j]) + " "
                               + Double.toString(dpbest[j]) + " "
                               + Double.toString(gbest[j]) + " ";
                     }
                     for (int j = 0; j < dim; j++){
                         F_value +=S_value[j];
                     }
                     F_value += (Double.toString(bestfitness)) + ""
                            +(Double.toString(m_dFitness));
                     job1reduce_key.set(1);
                     job1reduce_value.set(F_value);
                     context.write(job1reduce_key,job1reduce_value);
                  }
               }
           }
        }
    
        public static voidmain(String[] args) throws Exception {
              Configuration conf = new Configuration();
               String[]otherArgs = new GenericOptionsParser(conf, args)
                     .getRemainingArgs();
               if(otherArgs.length != 2) {
                  System.err.println("Usage:wordcount <in><out>");
                  System.exit(2);
               }
               Stringinput = otherArgs[0];
               Stringoutput = otherArgs[1];
               FileSystemfs;
    
               try{
                  fs =FileSystem.get(conf);
                  int step = 20;
                  for(int i = 0; i< step; i++) {
                     System.out.println("第" + i + "次:" + i);
                     Job job = new Job(conf, "word count");
                     job.setJarByClass(posmr.class);
                     
                     job.setMapperClass(IntSumReducer.class);
                     job.setReducerClass(job1Reducer.class);
                     
                    job.setMapOutputKeyClass(DoubleWritable.class);
                     job.setMapOutputValueClass(Text.class);
                     
                     job.setOutputKeyClass(Text.class);
                     job.setOutputValueClass(Text.class);
                     
                     FileInputFormat.addInputPath(job, newPath(input));
                     FileOutputFormat.setOutputPath(job, newPath(output));
                     
                     job.waitForCompletion(true);
                     input = output;  
                     output += i;
                  }
               } catch(IOException e) {
                  e.printStackTrace();
               } catch(InterruptedException e) {
                  e.printStackTrace();
               } catch(ClassNotFoundException e) {
                  e.printStackTrace();
               }
           }
    }